

Background

- Transient recombinant protein production systems are well-suited for emergency situations where rapid production of novel protein therapeutics is needed
- In plants, Agrobacterium tumefaciens can be used as a gene delivery vector for transient expression
- Agrobacterium vectors can be made in as little as two weeks, reducing the initial development time required before large-scale production of novel recombinant proteins
- **Controlling glycosylation patterns can enhance the** efficacy and safety of therapeutic proteins
- To reduce plant-specific glycans, β 1,2-xylosyltransferase and α1,3-fucosyltransferase knockdown (ΔXTFT) *Nicotiana benthamiana* plants have been generated
 - Removing plant-specific glycan patterns reduces the risk of an adverse patient immune response
 - In animal studies, antibodies produced in ΔXTFT *Nicotiana benthamiana* plants also showed enhanced efficacy compared to antibodies produced in Chinese hamster ovary (CHO) cells¹

Materials and Methods

Project objectives:

- 1) Generate cell suspension cultures from $\Delta XTFT$ Nicotiana benthamiana plants
- 2) Transiently produce and characterize an anthrax toxin receptor-Fc fusion protein (CMG2-Fc) using glycoengineered plant cell cultures

Co-culture process overview

CMG2-Fc mechanism of action:

- Inhibits binding of anthrax protective antigen (PA) to endogenous CMG2 receptors on human cells Soluble CMG2 has been shown to protect CHO cells
- from cell death resulting from PA treatment²
- CMG2 was fused to Fc region of human IgG to increase circulatory half-life, enable clearance of PA by the immune system, and simplify purification

Model of CMG2-Fc protein dimer, bound to anthrax protective antigen (PA)

Source: Planet Biotechnology

Transient Recombinant Protein Production in Glycoengineered Plant Cell Suspension Cultures

Sara C. Sukenik¹, Kalimuthu Karuppanan², Qiongyu Li³, Carlito B. Lebrilla³, Somen Nandi^{2,4} and Karen A. McDonald^{2,4}

¹Biomedical Engineering Graduate Group, University of California, Davis ²Department of Chemical Engineering, University of California, Davis ³Department of Chemistry, University of California, Davis ⁴Global HealthShare Initiative, University of California, Davis

Generation and characterization of $\Delta XTFT$ *Nicotiana benthamiana* plant cell suspension cultures

Transient production of CMG2-Fc in glycoengineered plant cell suspension cultures

• After 7 days of co-culture, CMG2-Fc expression was quantified by ELISA Co-culture was performed in 3 separate flasks for each mass ratio target Extracellular CMG2-Fc observed despite addition of an ER retention signal

N-glycan analysis of CMG2-Fc produced in glycoengineered plant cell suspension cultures

Cell Culture Morphology -Scale bars indicate 20 µm.

(A, B) Same field of view (B) Nuclear staining with DAPI (C) Cells stained with Evans blue (D) Cells treated with 70% ethanol prior to Evans blue staining

Western Blot

• Strong band at expected molecular weight observed after 5 fold concentration (5X) of biomass extract from highest expressing flask

order: hexose (mannose, glucose, and galactose), N-acetylglucosamine, fucose, and xylose.

Conclusions

- Plant cell suspension cultures generated from $\Delta XTFT$ Nicotiana benthamiana plants had a maximum specific growth rate of 0.113 day⁻¹
- An anthrax toxin receptor Fc fusion protein was transiently produced in glycoengineered plant cell cultures
 - Expression levels up to 10 µg/g plant fresh weight were observed
- Increasing mass ratio of *Agrobacterium* to plant cells enhanced expression levels
- Reduced levels of plant-specific glycans were observed on CMG2-Fc produced in the glycoengineered cell suspension cultures

Future Work

- Strategies to increase expression levels will be implemented, such as using a bioreactor to better control and optimize plant cell growth
- Simulating the process at commercial scale using SuperPro Designer software will identify target yield and recovery levels for cost-effective manufacturing
- To demonstrate the flexibility of this platform, other recombinant proteins will be produced by using different Agrobacterium vectors
- Additional genetic engineering of the host cell line could further enhance a product's safety and efficacy by tuning its N-glycan distribution

Acknowledgments

- This work was supported by the Defense Threat Reduction Agency (HDTRA1-15-1-0054) and the National Science Foundation (NSF-SSB #1509821)
- Sara Sukenik received funding from the Floyd and Mary Schwall Fellowship in Medical Research and an Achievement Rewards for College Scientists (ARCS) Scholar Award
- Nomad Bioscience GmbH provided ΔXTFT *N. benthamiana* seeds
- Planet Biotechnology, Inc. provided the CMG2-Fc standard and the ER retained CMG2-Fc Agrobacterium construct

References

- Zeitlin, L. et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (51), 20690-20694.
- 2. Scobie, H. M. et al. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (9), 5170-5174.